Using Deep Linguistic Features for Finding Deceptive Opinion Spam
نویسندگان
چکیده
While most recent work has focused on instances of opinion spam which are manually identifiable or deceptive opinion spam which are written by paid writers separately, in this work we study both of these interesting topics and propose an effective framework which has good performance on both datasets. Based on the golden-standard opinion spam dataset, we propose a novel model which integrates some deep linguistic features derived from a syntactic dependency parsing tree to discriminate deceptive opinions from normal ones. On a background of multiple language tasks, our model is evaluated on both English (gold-standard) and Chinese (non-gold) datasets. The experimental results show that our model produces state-of-the-art results on both of the topics. TITLE AND ABSTRACT IN ANOTHER LANGUAGE (MANDARIN)
منابع مشابه
Deceptive Opinion Spam Detection Using Deep Level Linguistic Features
This paper focuses on improving a specific opinion spam detection task, deceptive spam. In addition to traditional word form and other shallow syntactic features, we introduce two types of deep level linguistic features. The first type of features are derived from a shallow discourse parser trained on Penn Discourse Treebank (PDTB), which can capture inter-sentence information. The second type ...
متن کاملTowards Accurate Deceptive Opinion Spam Detection based on Word Order-preserving CNN
As a mainly network of Internet naval activities, the deceptive opinion spam is of great harm. The identification of deceptive opinion spam is of great importance because of the rapid and dramatic development of Internet. The effective distinguish between positive and deceptive opinion plays an important role in maintaining and improving the Internet environment. Deceptive opinion spam is very ...
متن کاملDeceptive Opinion Spam Detection Using Neural Network
Deceptive opinion spam detection has attracted significant attention from both business and research communities. Existing approaches are based on manual discrete features, which can capture linguistic and psychological cues. However, such features fail to encode the semantic meaning of a document from the discourse perspective, which limits the performance. In this paper, we empirically explor...
متن کاملLinguistic Models of Deceptive Opinion Spam
of the talk Consumers increasingly inform their purchase decisions with opinions and other information found on the Web. Unfortunately, the ease of posting content online, potentially anonymously, combined with the public's trust and growing reliance on this content, creates opportunities and incentives for abuse. This is especially worrisome in the case of online reviews of products and servic...
متن کاملFinding Deceptive Opinion Spam by Any Stretch of the Imagination
Consumers increasingly rate, review and research products online (Jansen, 2010; Litvin et al., 2008). Consequently, websites containing consumer reviews are becoming targets of opinion spam. While recent work has focused primarily on manually identifiable instances of opinion spam, in this work we study deceptive opinion spam—fictitious opinions that have been deliberately written to sound auth...
متن کامل